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Abstract
We present a family of birational transformations in CP2 depending on two,
or three, parameters which do not, generically, preserve meromorphic 2-forms.
With the introduction of the orbit of the critical set (vanishing condition of the
Jacobian), also called the ‘post-critical set’, we get some new structures, some
‘non-analytic’ 2-form which reduce to meromorphic 2-forms for particular
subvarieties in the parameter space. On these subvarieties, the iterates of the
critical set have a polynomial growth in the degrees of the parameters, while one
has an exponential growth out of these subspaces. The analysis of our birational
transformation in CP2 is first carried out using the Diller–Favre criterion in
order to find the complexity reduction of the mapping. The integrable cases are
found. The identification between the complexity growth and the topological
entropy is, once again, verified. We perform plots of the post-critical set, as
well as calculations of Lyapunov exponents for many orbits, confirming that
generically no meromorphic 2-form can be preserved for this mapping. These
birational transformations in CP2, which, generically, do not preserve any
meromorphic 2-form, are extremely similar to other birational transformations
we previously studied, which do preserve meromorphic 2-forms. We note that
these two sets of birational transformations exhibit totally similar results as far
as topological complexity is concerned, but drastically different results as far as
a more ‘probabilistic’ approach of dynamical systems is concerned (Lyapunov
exponents). With these examples we see that the existence of a preserved
meromorphic 2-form explains most of the (numerical) discrepancies between
the topological and probabilistic approaches of dynamical systems.
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1. Introduction: topological versus probabilistic methods in discrete dynamical systems

Two different approaches exist for studying discrete dynamical systems and evaluating the
complexity of a dynamical system: a topological approach and a probabilistic approach. A
topological approach will, for instance, calculate the topological entropy, the growth rate of
the Arnold complexity or the growth rate of the successive degrees when iterating a rational, or
birational, transformation. This, quite algebraic, topological approach is universal: one counts
integers (like some set of points, number of fixed points for the topological entropy, number
of intersection points for the Arnold complexity or like the degrees of successive polynomials
occurring in the iteration of rational or birational transformations). This universality is a
straight consequence of the fact that integer counting remains invariant under any (reasonable)
reparametrization of the dynamical system. Not surprisingly this (algebraic) topological
approach can be rephrased, or mathematically revisited (at least [1] in CP2, and even [2] in
CPn), in the framework [1] of a H 1,1 cohomology of curves in complex projective spaces
(CP2, CP1×CP1). In this topological approach, the dynamical systems are seen as dynamical
systems of complex variables and, in fact, complex projective spaces.

The probabilistic (ergodic) approach, probably dominant in the study of dynamical
systems, is less universal, and amounts to describing generic orbits, introducing some (often
quite abstract) positive invariant measures, and other related concepts like the metric entropy
(integral over a measure of Lyapunov exponents in Pesin’s formula [3]). Roughly speaking,
we might say that a phenomenological approach consisting of the plot of as many real orbits
as possible (phase portraits), or in the calculation of as many Lyapunov exponents as possible,
in order to get some hint of the ‘generic’ situation, also belongs to that probabilistic approach.
In this probabilistic approach the dynamical systems are traditionally seen as dynamical
systems of real variables, dominated by real functional analysis (symbolic dynamics, Gevrey
analyticity, . . . ), and differential geometry [4] (diffeomorphisms, . . . ).

The fact that these two approaches, the ‘hard’ one and the ‘soft’ one, may provide
(disturbingly) different descriptions of dynamical systems is known by some mathematicians,
but is hardly mentioned in most of the graduate textbooks on discrete dynamical systems,
which, for heuristic reasons, try to avoid this question, implicitly promoting, in its most
extreme form, the idea that most of the dynamical systems would be, up to strange attractors,
hyperbolic (or weakly hyperbolic) systems, the ‘paradigm’ of dynamical systems being the
linearizable deterministic chaos of Anosov systems [5, 6]. Of course, for such linearizable
systems, these two approaches are equivalent. Along this line one should recall J-C Yoccoz
explaining4 that the dynamical features that we are able to understand fall into two classes,
hyperbolic dynamics and quasiperiodic dynamics: ‘it may well happen, especially in the
conservative case, that a system exhibits both hyperbolic and quasiperiodic features . . . we
seek to extend these concepts, keeping a reasonable understanding of the dynamics, in order to
account for as many systems as we can. The big question is then: are these concepts sufficient
to understand most systems?’

The description of conservative cases (typically area-preserving maps and, more
generally, mappings preserving 2-forms, or p-forms) is clearly the difficult one, and the one for
which the distance between the two approaches, the ‘hard’ one and the ‘soft’ one, is maximum
(in contrast with hyperbolic systems and, of course, linearizable Anosov systems). It is not
outrageous to say that dynamical systems which are not hyperbolic (or weakly hyperbolic), or
integrable (or quasiperiodic), but conservative, preserving meromorphic 2-forms (or p-forms),
are poorly understood, few tools, theorems, and results being available.

4 In his own address at the International Congress of Mathematicians in Zurich in 1994, or (in French) in [7].
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In general for realistic reversible5 mappings (which are far from being hyperbolic,
or weakly hyperbolic, but closer to conservative systems), the equivalence of these two
descriptions of drastically different mathematical nature is far from being clear.

This possible discrepancy between these two approaches (topological versus ergodic) is
well illustrated by the analysis of many discrete dynamical systems we have performed [10–14],
corresponding to iterations of (an extremely large class of) birational transformations. These
mappings have non-zero (degree-growth [14] or Arnold growth rate [12]) complexity, or
topological entropy [13]; however, their orbits always look like (transcendental) curves6 totally
similar to the curves one would get with an integrable mapping, and systematic calculations
of the Lyapunov exponents of these orbits give zero, or negative (for attracting fixed points),
values. To a great extent, the regularity of these orbits, and, more generally, the regularity
of the whole phase portrait, seems to be related to the existence of preserved meromorphic
2-forms (resp. p-forms) for these birational transformations [11, 12]. Could it be possible that
(when being iterated) a birational transformation could have a non-zero topological entropy
and, at the same time, zero (or very small) metric (probabilistic) entropy [15], the previous
‘almost-integrability’ being a consequence of preserved meromorphic 2-forms (resp. p-forms)?

The existence of a preserved meromorphic 2-form corresponds to a quite strong (almost
algebraic) structure. Naively, one can imagine that a discrete dynamical system with a
preserved meromorphic 2-form should be ‘less involved’ than a discrete dynamical system
without such differential structure. Should the existence of such exact differential structure
be related to the ‘hard’ topological, and algebraic, approach of discrete dynamical systems
(hidden Kählerian structures7 for birational transformations, . . . ), or should it be related to
the ‘soft’ probabilistic (ergodic) approach (possible relation between ‘complex’ and ‘real’
invariant measures . . . )? The answer to the previous question will be fundamental to ‘fill the
gap’ between the two approaches or, at least, better understand the discrepancies between
these two descriptions of birational dynamical systems. To answer this question, one would
like to find two sets of birational transformations as similar as possible, but such that one set
preserves a meromorphic 2-form, and the other set does not preserve a meromorphic 2-form,
in order to compare the topological and probabilistic approaches on these two sets.

Along this line, one should note that we found quite systematically, and surprisingly,
preserved meromorphic 2-forms (resp. p-forms) for an extremely large set of birational
transformations in CP2, and in CPn, n > 2. Similar results were also found by other groups8

for extremely large sets of birational transformations in CP2. Could it be possible that all
birational transformations in CP2 preserve9 a meromorphic 2-form [19]? We first need to find
a first (and as simple as possible) example of birational transformation in CP2 for which one
can show, or at least get convinced of, a ‘no-go’ result like the non-existence of a meromorphic
2-form (even very involved . . . ).

The paper is organized as follows: we will first recall various ‘complexity’ results on a first
set of birational transformations in CP2, preserving meromorphic 2-forms, and we will also
recall some results [1] of Diller and Favre on the topological approach of the complexity of
these mappings. We will then introduce a slightly modified set of birational transformations in

5 By reversible we mean, flatly, invertible: the inverse map is well defined, the number of pre-image of a generic
point being unique. Note that the word ‘reversible’ is also used by some authors [8, 9] to say that the inverse map
K−1 is conjugate to the map itself K .
6 This is the reason why we called these mappings ‘almost integrable’ in [10].
7 One may recall some exact algebraic (in their essence) results which are obtained in some Kälherian framework
[16, 17] (for instance, one inherits, immediately, a particular cohomology and strong differential structures [4]).
8 J. Diller, private communication.
9 At first sight, such a strange result would present some similarity with the, still quite mysterious, ‘Jacobian
conjecture’ of the Smale’s problems [18].
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CP2 for which we will perform similar topological approach calculations. These calculations
will provide, for this second set, subcases where meromorphic 2-forms are actually preserved.
This topological approach will lead us to introduce a fundamental tool, the orbit of the critical
set10, which will give some strong numerical, and graphical, evidence that a meromorphic
2-form does not exist generically for this second set, outside the previous subcases. This non-
existence of a meromorphic 2-form will be confirmed by a large set of Lyapunov exponents
calculations, clearly exhibiting non-zero positive Lyapunov exponents for this second set.
We will thus be able to conclude on the impact of the existence of a meromorphic 2-form
on the (apparent numerical) discrepancy between the topological and probabilistic (ergodic)
approaches of discrete dynamical systems.

2. 2-forms versus invariant measures

Let us first recall the birational transformation kε in CP2 we have extensively studied
from a topological (almost algebraic) viewpoint, and also from a measure theory (almost
probabilistic) viewpoint [11]. It is a one-parameter transformation (ε ∈ C, or ε ∈ R) and it
reads [13, 20]

(x, y) → kε(x, y) = (x ′, y ′) =
(

y · x + ε

x − 1
, x + ε − 1

)
. (1)

It was found [20] that kε , the CP2 birational transformation (1), preserves11 a meromorphic
2-form [12]:

dµ = dx · dy

ρ(x, y)
= dx · dy

y − x + 1
. (2)

The 2-form (2) should not be called a ‘measure’ since the denominator y − x + 1 can be
negative. The preservation of this 2-form corresponds to the following identity between the
covariant ρ(x, y) = y − x + 1 and the Jacobian of transformation kε :

J (x, y) = ρ(x ′, y ′)
ρ(x, y)

= ρ(kε(x, y))

ρ(x, y)
. (3)

The preservation of this 2-form means that this birational mapping can be transformed, using
a (non-rational) change of variables, into an area-preserving mapping (see page 1475 of [12],
or page 391 in [11]). As far as a ‘down-to-earth’ visualization of the (real) orbits and, more
generally, of the phase portraits, is concerned, one sees that this kε-invariant 2-form (2) can
actually be ‘seen’ on the phase portrait; near the straight line y − x + 1 = 0, corresponding to
the vanishing of the denominator of (2), the points of the phase portrait look like a ‘spray’ of
points ‘sprayed’ near a wall corresponding to this straight line (see for instance figure 2 right,
and figures 3, 4, 6 and 7 in [12]).

This birational mapping was shown [13, 20] to have a non-zero topological entropy and
a degree growth complexity (or growth rate of the Arnold complexity) associated with a
quadratic number (golden number), corresponding to the polynomial 1 − t − t2. However, the
extensive Lyapunov exponents calculations we performed, systematically, gave zero values
for all the (numerous) orbits we considered (see figure 3 right, or figures 5, 8, 10, 21, and

10 Also called, by some mathematicians, post-critical set, or, in short, ‘PC’. Note that the general framework we
consider here corresponds to birational transformations having a non-empty indeterminacy set, which is the natural
framework when one considers birational transformations; the mathematician reader should forget all the theorems
he knows on holomorphic transformations (toric monomial transformations, etc).
11 Birational mapping (1) is a particular case of a two-parameter dependent [20] birational mapping kε,α , which can
also be seen to preserve a meromorphic 2-form [21].



Chaotic non-attractors 7961

pages 403–19 of [11]). The orbits of this mapping look very much like curves and thus it is not
surprising to get zero Lyapunov exponents (see paragraphs 4 and 5 in [11]). This Lyapunov
exponent viewpoint, as well as the down-to-earth visualization of the orbits, suggests that the
mapping is ‘almost an integrable mapping’, in contradiction with the topological viewpoint.
Recalling, just for heuristic reasons, some Pesin-like formula12, considering the entropy as the
integral over ‘some’ invariant measure dµLyap of the Lyapunov exponents, it would be natural
to ask: where the non-zero positive Lyapunov exponents are hidden? Where is this apparently
‘evanescent’ invariant measure of non-zero positive Lyapunov exponents? It certainly does
not correspond to any measure describing the previously mentioned ‘spray’ of points (which
could be related to the meromorphic 2-form (2)). For invertible mappings like birational
mappings, the known way [22] of building invariant measures as successive pre-images13 of
(almost) any point simply does not work. Bedford and Diller [23] showed how to build such
invariant measure dµLyap corresponding to non-zero positive Lyapunov exponents, for the
(invertible) birational transformation (1). Their method amounts to considering two arbitrary
curves14 �1 and �2 (instead of an arbitrary point), iterate �1 with kε and �2 with k−1

ε , and
consider the limit set obtained as the intersection of these two different iterated curves; the
invariant measure emerges as a wedge product µ+ ∧µ−. Such a wedge product construction is
actually performed in detail in [23] on mapping (1). The invariant measure built that way can
be seen to correspond to an extremely slim Cantor set, which is drastically different from the
meromorphic 2-form (2), or, more generally, from any invariant measure one could imagine
being associated with the previously mentioned spray of points.

It is also worth recalling that Bedford and Diller were also able [23] on this very example,
but only for ε < 0 (where only saddle points occur), to build some symbolic dynamics
coding, yielding a 2 × 2 matrix that actually identifies with some induced pullback f ∗ on the
cohomology group15 H 2(P 1 × P 1), thus filling, for ε < 0, the gap between a real analysis
approach of dynamical systems and an algebraic projective complex analysis of dynamical
systems16.

This provides a first answer to the discrepancy between the topological and probabilistic
approaches for such birational transformations (1) (at least17 for ε < 0): as far as computer
experiments are concerned, the regions where the chaos [25–28] (Smale’s horseshoe,
homoclinic tangles, . . . ) is hidden is concentrated in extremely narrow regions.

3. A first family of Noetherian mappings

We have introduced in [29] a simple family of birational transformations in CPn (n = 2, 3, . . .)

generated by the simple product of the Hadamard inverse and (involutive) collineations. These

12 Such a birational mapping is not a hyperbolic system, and the various other birational examples we have studied
are not even quasi-hyperbolic. Pesin’s formula [3] (see also pages 299 and 400 in [11]) is certainly not valid here.
We just recall it for heuristic reasons, as an analogy.
13 Note that, for such non-invertible cases, we found no contradiction between the topological approach and the
probabilistic (invariant measure) approach; for a non-invertible deformation of (1) we clearly found non-zero positive
Lyapunov exponents for most of the orbits (see paragraph 8 and figures 27 and 28 in [11]).
14 They might even be identical.
15 See the cohomological approach of Diller and Favre in [1], to get the growth rate complexity.
16 More recently they have been able to generalize, very nicely [24], all these results to the birational mappings kε,α ,
depending on two parameters [13, 20]. Mapping (1) is obtained from kε,α by setting α = 0. This mapping [13, 20],
kε,α , can also be seen to preserve a meromorphic 2-form. Paper [24] provides explicit examples of a 5 × 5 matrix
(linear map of the Picard group), and a 4 × 4 matrix, encoding the symbolic dynamics, such that their characteristic
polynomial both contain a factor associated with the polynomial 1 − t − 2t2 − t3, corresponding to the (topological)
complexities of our birational family analysed in [20].
17 For ε > 0, the situation is far from being so clear.
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birational transformations, we called Noetherian [29] mappings18, present remarkable results
for the growth complexity, and the topological entropy, in particular remarkable complexity
reductions for some specific values of the parameters19 of the mapping. These complexity
reductions correspond to a criterion, introduced by Diller and Favre [1], based on the
comparison between the orbit of the critical set, or even the exceptional locus, and the
indeterminacy locus (see (3.2)). These mappings have similar properties compared to the one
given for (1), namely a topological entropy, or a degree growth rate, associated with algebraic
numbers, similar phase portraits, and the existence of preserved meromorphic 2-forms for the
transformations in CP2, or, in CPn, preserved meromorphic n-forms, together with n − 3
algebraic invariants. In the following we will restrict ourselves to birational transformations
in CP2: some of the results, we will display in the following sections, generalize, mutatis
mutandis, to birational transformations in CPn (n = 3, 4, . . .) and some do not.

3.1. The mapping

Let us recall [29] the construction of the birational mapping K product of a collineation C and
of a nonlinear involution, the Hadamard inverse, H , acting on CP2. We consider the standard
quadratic homogeneous transformation, H, defined as follows on the three homogeneous
variables (t, x, y) associated with CP2:

H : (t, x, y) −→ (xy, ty, tx). (4)

We also introduce the following 3 × 3 matrix, acting on the three homogeneous variables
(t, x, y):

MC =

a − 1 b c

a b − 1 c

a b c − 1


 (5)

and the associated collineation C which reads, in terms of the two inhomogeneous variables
u = x/t and v = y/t :

(u, v) −→ (u′, v′) =
(

a + (b − 1)u + cv

(a − 1) + bu + cv
,
a + bu + (c − 1)v

(a − 1) + bu + cv

)
. (6)

The birational mapping K = C · H , reads, in terms of the two inhomogeneous variables
u = x/t and v = y/t :

K : (u, v) −→ (u′, v′) =
(

auv + (b − 1)v + cu

(a − 1)uv + bv + cu
,
auv + bv + (c − 1)u

(a − 1)uv + bv + cu

)
. (7)

This birational mapping (7) conformally20 preserves a 2-form. Actually, if one considers
the product ρ(u, v) = (u−1)(v −1)(u−v), a straightforward calculation shows that J (u, v),
the Jacobian of (7), is actually equal to

J (u, v) = ξ · ρ(u′, v′)
ρ(u, v)

= ξ · uv

((a − 1)uv + cu + bv)3
(8)

where ξ = a + b + c − 1 and where (u′, v′) is the image of (u, v) by the birational
transformation (7), or equivalently

du′ · dv′

(u′ − 1)(v′ − 1)(u′ − v′)
= ξ · du · dv

(u − 1)(v − 1)(u − v)
. (9)

18 In reference to Noether’s theorem of decomposition of birational transformations into products of quadratic
transformations, like the Hadamard inverse, and collineations [29].
19 The parameters correspond to the entries of the collineation matrix.
20 This means that the 2-form is preserved up to a constant ξ .
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For ξ = 1 (i.e. det(MC) = 1), the matrix MC , as well as its associated collineation C, are
involutions, and the 2-form (9) is exactly preserved.

3.2. Diller–Favre criterion: complexity reduction from the analysis of the orbit
of the exceptional locus

We recall, in this section, the Diller–Favre method [1], in order to describe the singularities
of the mapping, and deduce complexity reductions of the mapping. In particular we give, for
mapping (7), the equivalent of lemmas 9.1 and 9.2 of [1].

We assume, here, that condition c = 2 − a − b is satisfied (i.e. ξ = 1). The Jacobian
J (u, v) vanishes on u = 0, on v = 0, and becomes infinite when v = −cu/((a − 1)u + b).

Using the same terminology as in [1], one can show that the exceptional locus21 of K is
given by

E(K) =
{
(u = 0); (v = 0);

(
v = −cu

(a − 1)u + b

)}
(10)

and the indeterminacy locus [1] of K is given by

I(K) =
{
(0, 0);

(
b

(b − 1)
, 1

)
;
(

1,
c

(c − 1)

)}
.

Actually, for (u, v) = (0, 0), the u and v components of K are, both, of the form
0/0, for (u, v) = (b/(b − 1), 1), the v-component of K is of the form 0/0 and, for
(u, v) = (1, c/(c − 1)), the u-component of K is of the form 0/0.

As far as the three vanishing conditions (10) of the Jacobian, or its inverse, are concerned,
it is easy to see that their successive images by K give respectively, when condition ξ = 1 is
satisfied:

(0, v) →
(

b − 1

b
, 1

)
→ · · · →

(
n(b − 1)

nb − (n − 1)
, 1

)

(u, 0) →
(

1,
c − 1

c

)
→ · · · →

(
1,

n(c − 1)

nc − (n − 1)

)
(

u,
−cu

(a − 1)u + b

)
→ (∞,∞) → · · · →

(
(n − 1)a − (n − 2)

(n − 1)(a − 1)
,
(n − 1)a − (n − 2)

(n − 1)(a − 1)

)
.

(11)

Note that the iterates of E(K) for n = ∞ converge towards (1, 1) the fixed point of order
one of mapping K.

One has similar results [29] for the successive images by K−1 of its exceptional locus.
At first sight it may look remarkable that the image by K of curves (like the three vanishing

conditions (10) of the Jacobian, or its inverse) actually blow down into points. This is, in fact,
a natural feature22 of birational transformations (even in CPn). Such a phenomenon of blow
down can only occur for transformations having a non-empty indeterminacy set: for instance,
it cannot occur with holomorphic transformations.

One remarks that all these n th iterates (by K or K−1) belong (for n � 2) to the three
K-invariant lines, namely u = 1, v = 1 or u = v.

21 Corresponding to the critical set J (u, v) = 0, together with condition J (u, v) = ∞.
22 If one considers the set of points where the Jacobian vanishes, also called critical set, and assume that some part
of this critical set is not blown down into a point, then the birational mapping would not be (locally) bijective. Such
points would have, at least, two pre-images in contradiction with the birational character of the transformation. This
sketched proof remains valid for a birational transformation in CPn for n � 3.
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Diller and Favre’s statement is that the mapping K is analytically stable [1] if, and only
if, Kn(E(K)) /∈ I(K) (respectively K(−n)(E(K−1)) /∈ I(K−1)) for all n � 1. In other words
the complexity reduction, which breaks the analytically stable character of the mapping, will
correspond to situations where some points of the orbit of the exceptional locus (Kn(E(K)))

encounter the indeterminacy locus I(K). Having an explicit description of these orbits
(see (11)) for this birational transformation, one can easily deduce the complexity reduction
situations associated with parameters a, b or c, being of the form (N − 1)/N , where N is any
positive integer. For instance, when a = (M − 1)/M (M positive integer) and b is generic,
one gets a complexity reduction. The complexity [29] is associated with the polynomial23

P = 1 − 2t + tM+1 (12)

and, similarly, when a = (M − 1)/M and b = (N − 1)/N (M and N positive integers), the
complexity is associated [29] with the polynomial:

PM,N = 1 − 2t + tM+1 + tN+1 − tM+N . (13)

3.3. Beyond the involutive condition: ξ = a + b + c − 1 �= 1

Let us show that the iterates of the exceptional locus also have explicit expressions when C is
no longer involutive (namely ξ �= 1). The iterates of E(K) become

(0, v) →
(

b − 1

b
, 1

)
→ · · · → (Un, 1)

(u, 0) →
(

1,
c − 1

c

)
→ · · · → (1, Vn)(

u,
−cu

(a − 1)u + b

)
→ (∞,∞) → · · · → (Xn,Xn)

with

Un(a, b, c) = (b − 1)((a + b + c − 1)n − 1)

(b − 1)(a + b + c − 1)n + (a + c − 1)

Vn(a, b, c) = Un(a, c, b), Xn(a, b, c) = 1/Un−1(b, a, c).

(14)

Now, the iterates of E(K) in the n = ∞ limit depend on the value of ξ = a + b + c − 1
and read

|ξ | < 1 Un → 1 − b

a + c − 1
, Vn → 1 − c

a + b − 1
, Xn → b + c − 1

1 − a

|ξ | > 1 Un → 1, Vn → 1, Xn → 1.

(15)

The above limits are precisely the fixed point(s) of order one of mapping K which read

(1, 1),

(
1,

1 − c

a + b − 1

)
,

(
1 − b

a + c − 1
, 1

)
,

(
b + c − 1

1 − a
,
b + c − 1

1 − a

)
.

Again, one remarks that all these nth iterates (by K or K−1) belong (for n � 2) to the
three K-invariant lines u = 1, v = 1 or u = v, allowing a meromorphic 2-form like (9) to be
(conformally) preserved.

For ξ = 1, the four fixed points of order one collapse to a single parabolic fixed point. For
ξ �= 1, the iterates of the exceptional locus converge to one, or more than one, fixed point(s)
of order 1.
23 The degree generating function [12, 20] is a rational expression with polynomial (12) in its denominator.
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4. A second family of Noetherian mappings

Let us now introduce another set of birational transformations in CP2, built in a totally
similar way as the Noetherian mappings [29] of the previous section, namely as product of a
collineation C and the previous quadratic transformation H (Hadamard inverse (4)). Our only
slight modification is that the 3 × 3 matrix MC , associated with this collineation, is now the
transpose of matrix MC considered in [29] and previously given in (5). It is straightforward to
remark that ξ = a + b + c − 1 = 1 is again the condition for collineation C to be an involution
(det(MC) = 1). In that involutive case it is also straightforward to see that KN , and K−N ,
are conjugated: K−N = C · KN · C = C−1 · KN · C = H−1 · KN · H = H · KN · H . Thus,
transformations K and K−1 have necessarily the same complexity. Most of the results we will
display in the following, will be restricted (for heuristic reasons) to this involutive condition
ξ = a + b + c − 1 = 1, but it is important to keep in mind that many of these results can be
generalized to the non-involutive case ξ �= 1.

The mapping K = C · H , in terms of inhomogeneous variables (u = x/t, v = y/t),
reads

K : (u, v) −→
(

buv + (b − 1)v + bu

(a − 1)uv + a(u + v)
,

cuv + cv + (c − 1)u

(a − 1)uv + a(u + v)

)
. (16)

When written in a homogeneous way it is clear, since the three homogeneous variables as
well as the three parameters (a, b, c) are on the same footing, that the family of transformations
K = C · H must exhibit a symmetry with respect to the group of permutations of the three
(homogeneous) variables. The symmetry, induced by this group of permutations of the
three homogeneous variables, leads to equivalence between mappings with different couple
of parameters a and b (with c = 2 − a − b). The change (a, b) → (b, a) combined with
(u, v) → (1/u, v/u), and the change (a, b) → (a, 2−a −b) combined with (u, v) → (v, u),
leave the mapping K unchanged. Defining the two involutions

P : (a, b) −→ (a, 2 − a − b), T : (a, b) −→ (b, a) (17)

the parameter plane (a, b) is composed of six equivalent regions reached by five
transformations of one region. The five regions are reached from (e.g.) the region
1−a/2 � b � a by the action of24 P, T , P ·T , T ·P and P ·T ·P . It means that the mappings
built with one of the matrices MC,P · MC, T · MC,P · T · MC, T · P · MC,P · T · P · MC

are equivalent. As a consequence, if (a, b) gives the complexity λ, so do P(a, b), T (a, b),

P · T (a, b), T · P(a, b), P · T · P(a, b) for the corresponding mapping. The fixed points of
the involutions P, T and P · T · P lie, respectively, on three lines:

b = 1 − a/2, b = a, b = 2 − 2a. (18)

These three lines present interesting properties as will be seen in the following. The fixed
point of P · T , or T · P , corresponds to a point a = b = 2/3 in the (a, b) parameter plane (we
will see below that this corresponds to an integrable mapping). As far as symmetries in the
(a, b) parameter plane are concerned, another codimension-one subvariety pops out, namely
the quadric

C0(a, b) = a2 + b2 + ab − 2(a + b) = 0 (19)

which is invariant under the five transformations P, T , P · T , T · P and P · T · P . Having a
genus 0, curve (19) has a rational parametrization.

Condition C0(a, b) = 0 occurs as a condition for K to be an order two transformation not
in the whole (u, v) plane, but on some singled-out curve (see the algebraic curve (34)). Note
that, an algebraic curve such that K2(u, v) = (u, v) is necessarily a covariant curve for K .

24 Note that P · T (or T · P ) is an order three symmetry.
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4.1. Diller–Favre complexity reduction analysis on the new Noetherian mappings

In order to perform a complexity reduction analysis on (16), similar to that displayed in
section 3.2, based on the Diller–Favre criterion, let us calculate the Jacobian of K , the
birational transformation (16):

J (u, v) = (a + b + c − 1)uv

((a − 1)uv + a(u + v))3
. (20)

Denoting by J (−1) the Jacobian of K−1, one easily verifies that (as it should)

J (K−1(u, v)) · J (−1)(u, v) = J (u, v) · J (−1)(K(u, v)) = +1.

The finite set of points of indeterminacy of the mapping, I(K), and the finite set of
exceptional varieties of the mapping (critical set J = 0, together with condition J = ∞),
E(K), are

I(K) = {I1, I2, I3} =
{
(0, 0);

(
a

b
,

a

1 − a − b

)
;
(

a

b − 1
,

a

2 − a − b

)}

E(K) = {V1, V2, V3} =
{
(u = 0); (v = 0);

(
u = −av

v(a − 1) + a

)}
.

Let us focus on the first iterates of one of the three vanishing conditions of the Jacobian V2,
namely v = 0:

(u1, v1) =
(

b

a
,

1 − a − b

a

)
,

(u2, v2) =
(

(b − 1)

(a − 1)

(
C22

2 + b
)

(
C22

2 + a
) ,

(1 − a − b)

(a − 1)

(
C22

2 − a − b
)

(
C22

2 + a
)

)
,

(u3, v3) = · · · .

(21)

The expression C22
2 is given in (22). Note that, in contrast with the situation encountered in

the previous section (see (11), (14)), the degree growth of (the numerator or denominator of)
these successive expressions in the parameters a and b is now actually exponential, and thus
one does not expect closed forms for the successive iterates (uN, vN). We will denote by δ the
degree growth rate (complexity) associated with the exponential degree growth � δN of these
uN s and vN s (in the (a, b) parameters). This degree growth rate (in the parameters a and b)
of the iterates of the vanishing conditions of the Jacobian depends on the values of a and b.
In the previous section (see (11), (14)) this degree growth rate was δ = 1 for generic values of
the parameters.

Before performing any calculation, let us remark that, due to the previously mentioned
permutation symmetry, the nine ‘Diller–Favre conditions’ KN(E(K)) ∈ I (K) for complexity
reduction are related

K(V1) ∈ I1 ⇐⇒ P · K(V2) ∈ I1, K(V1) ∈ I2 ⇐⇒ K(V2) ∈ I3,

K(V2) ∈ I2 ⇐⇒ P · K(V1) ∈ I3, K(V3) ∈ I3 ⇐⇒ P · K(V3) ∈ I2.

The method in [1] amounts to solving KN(Vi) ∈ Ij . One obtains, for mapping
(16), algebraic curves in the (a, b)-plane, with some singled-out (a, b) points. These
algebraic curves appear, at even orders, as common polynomials (gcd) in the components
of KN(V1) ∈ I3, or KN(V2) ∈ I2 or KN(V3) ∈ I1. Let us call these algebraic curves
associated with conditions KN(Vi) ∈ Ij , respectively C13

N ,C22
N and C31

N (N being even). For
instance C22

2 corresponds to KN(V2) ∈ I2, that is (u2, v2) = (a/b, a/(1−a−b)), which reads
(a2 + ab + b2) − (a + b) = 0. These algebraic curves are (a, b)-subvarieties of complexity
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Figure 1. Polynomials CN in the (a, b) parameter plane (upper right corner).

growth, for (16), lower than the generic one (λ = 2), and they are related by P · C13
N = C22

N

and T · C13
N = C31

N . They are polynomials in a, b of degrees 2, 6, 12, 26, 48, 98, . . . (for
N = 2, 4, 6, 8, 10, 12, . . .). Since they are calculated from the uN ’s and vN ’s (21) which are
rational expressions in (a, b) with corresponding polynomials of degree growing exponentially
like δN ∼ 2N , it is not surprising to see the degree of these successive (a, b) polynomials
growing exponentially, but with a lower rate (see appendix A).

Note that the singularities of these algebraic curves (from a purely algebraic geometry
viewpoint: local branches, . . . ) correspond to points (a, b), in parameter space, for which the
birational transformation K has actually lower complexities (see appendix A). Note that the
singularities of the curves CN ’s contain those of the curves of lower N. A detailed analysis of
this set of curves, their mutual intersections and the relation between these intersections, and
singled-out (singular) points of the curves, and the associated further reduction of complexity,
will not be performed here.

The polynomials C22
N appearing in this complexity reduction analysis are, of course,

symmetric in a and b. Those of the first orders read

C22
2 = (a2 + ab + b2) − (a + b)

C22
4 = (a2 + ab + b2)3 − (a + b)(a2 + ab + b2)(4a2 + 7ab + 4b2) + (7a4 + 26a3b + 36a2b2

+ 26ab3 + 7b4) − (a + b)(6a2 + 11ab + 6b2) + (2a2 + 3ab + 2b2). (22)

These polynomials C
ij

N (ij = 13, 22, 31) have been obtained up to N = 12. Some of their
algebraic geometry properties (singularities, genus, . . . ) are summarized in appendix A.

Let us display these various algebraic curves C
ij

N in the (a, b)-parameter plane. One sees,
in figure 1 (upper right corner), that this accumulation of curves looks a little bit like a
(discrete) ‘foliation’ of the (a, b)-plane in curves similar to a linear pencil of algebraic
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curves [30], the ‘base points’ of this linear pencil being, in fact, singular points of these CN ’s
(see appendix A) of lower complexity and sometimes, (a, b) points for which the mapping
becomes integrable.

On these algebraic curves C
ij

N = 0, (N = 2, 4, 6, . . .), the complexity is given by the
inverse of the smallest root of

1 − 2t + tN+2 = 0. (23)

As N increases, the complexity reads λ = 1.8392, 1.9659, 1.9919, . . . One recovers a family of
complexities (depending on N ) already seen for the Noetherian mappings [29] of the previous
section and even for the mapping (1) for ε = 1/N (see [20]). Actually, one finds a shift of +1
between (12) and (23).

In contrast with the situation encountered with the Noetherian mappings of the previous
section (3.2) (see also [29]), the complexity reduction conditions are now involved families
of polynomials (exponential degree growth in the (a, b) parameters i.e. δ > 1), instead
of the previous extremely simple, and separated conditions [29] in the a, b, c variables
(a = (N − 1)/N, . . .).

Recalling the complexity reduction scheme described in section 3.2 for mapping (7), we
saw further complexity reductions on the intersections of two complexity reduction conditions
a = (M − 1)/M and b = (N − 1)/N (M and N positive integers) and c = 2 − a − b,
namely families of complexities depending on the two integers N and M associated [29] with
polynomials 1 − 2t + tM+1 + tN+1 − tM+N .

By analogy, it is natural to ask whether a similar complexity reduction scheme also occurs
for mapping (16), by calculating the degree growth complexity when the parameters a and b
are restricted to the intersection of two conditions C

ij

N = 0. Actually, we have considered the
intersection of C31

2 = 0 and C22
4 = 0, that we will denote symbolically by C31

2 ∩ C22
4 , as well

as the intersection C13
2 ∩ C31

4 . We obtained the following generating function in agreement
with the successive degrees (up to t9) in the corresponding iteration:

GC13
2 ∩C31

4
= 1 + 2t + 4t2 + 7t3 + 13t4 + 24t5 + 43t6 + 77t7

+ 138t8 + 247t9 + · · · = 1 − t3

1 − 2t + t4 + t6 − t8
. (24)

Keeping in mind the shift of +1 between (12) and (23), one might expect a formula like
(13) for an intersection C13

M ∩ C31
N (or C31

M ∩ C22
N )

QM,N = 1 − 2t + tM+2 + tN+2 − tM+N+2. (25)

This is actually the case with the previous example (24) where one has M = 2 and N = 4.
Another example, also in agreement with (25), corresponds to the intersection C31

4 ∩ C13
6 for

which one gets a rational degree generating function with denominator 1 − 2t + t6 + t8 − t12.
Note that such a formula seems to remain valid even when M = N . For instance, for

C13
4 ∩C31

4 the denominator of the generating function reads 1−2t +2t6 − t10, and for C13
6 ∩C31

6
the denominator reads 1 − 2t + 2t8 − t14, in agreement with (25) for M = N = 6.

One sees that one has exactly the same complexity reduction scheme, and the same family
of complexity, as that depicted in section 3.2 for [29].

However, one does see a difference with the intersection of three conditions. For mapping
(7), we saw [29] that the intersection of three conditions a = (N − 1)/N, b = (M − 1)/M ,
c = 2−(a +b) = P/(P +1) yields systematically integrable mappings. Here the (a, b) points
corresponding to intersection of three conditions C

ij

N = 0 when they exist may still yield an
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exponential growth of the calculations of lower complexity:

GC13
6 ∩C31

6 ∩C22
8

= 1 + 2t + 4t2 + 8t3 + 14t4 + 24t5 + 40t6 + 66t7

+ 108t8 + · · · = 1 + t3

(1 − t)(1 − t − t2)
= 1 + t3

1 − 2t + t3
. (26)

We have a similar result for the intersection of the three curves C31
2 ∩ C31

6 ∩ C31
10 with a

denominator reading 1 − 2t + t4.
One should remark, in contrast with most of the degree growth rate calculations we

have performed for so many birational transformations [14], that one can hardly find rational
values for the two parameters a and b, lying on the various C

ij

N s we have just considered (and
of course it is even harder for intersections of such algebraic curves), such that one would
deal with iterations of birational transformations with integer coefficients, and factorization
of polynomials with integer coefficients. Such (a, b) points on C

ij

N algebraic curves or
intersections of such curves are algebraic numbers. The degrees of the successive iterates
should correspond to factorizations performed in some field extension corresponding to these
algebraic numbers and curves. In practice, results and series like those displayed above
((23), . . . , (26)) cannot be obtained this way. To achieve these factorizations, we have
introduced a ‘floating’ factorization method that is described in appendix B.

4.2. Degree growth complexity versus topological entropy

The topological entropy is related to the growth rate of the number of fixed points of KN

(see [12]). The counting of the number of primitive cycles of order N , for the generic case
[4, 1, 2, 3, 6, 9, 18, 30, . . .] gives a rational dynamical zeta function [20]

ζg(t) = 1

(1 − 2t)(1 − t)2
(27)

which is related to the homogeneous degree generating function G(K) by the identity:
t

ζg

· d

dt
ζg = 2G(K)(t) +

2t

1 − t
= 2t

1 − 2t
+

2t

1 − t
. (28)

Restricted to the curve of complexity reduction C22
2 (a, b) = 0, the primitive fixed points

become [4, 1, 2, 2, 4, 5, 10, 15, 26, 42, . . .] giving the rational dynamical zeta function:

ζ(t) = 1

(1 − 2t + t4)(1 − t)2
. (29)

Again, note that this dynamical zeta function is related to the homogeneous degree generating
function G(K) (corresponding to C22

2 (a, b) = 0), by the identity:

t

ζ
· d

dt
ζ = 2G(K)(t) +

2t

1 − t
= 2t · (1 − 2t3)

1 − 2t + t4
+

2t

1 − t
. (30)

We thus see, with these two examples (and similarly to the results obtained for the
birational transformations [12, 20] as well as the Noetherian mappings [29]), an identification
between the growth rate of the number of fixed points of KN , and the growth rate of the
degree of the iteration (previously studied (16)), or equivalently, the growth rate of the Arnold
complexity.

Relations (28) and (30) are in agreement with a Lefschetz formula25:

νN = dN(K) + dN(K−1) + 1 + 1 (31)
25 The Lefschetz formula is well defined in the holomorphic framework (see page 419 in [31]), but is much more
problematic in the non-holomorphic case of birational transformations for which indeterminacy points take place: in
very simple words one could say that, in the Lefschetz formula, some fixed points are ‘destroyed’ by the indeterminacy
points. A good reference is [32].
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where νN denotes the number of fixed points of K or K−1, dN(K) denotes the degree of
KN, dN(K−1) the degree K−N . This formula (31) means that the number of fixed points
is the sum of four ‘dynamical degrees’ [32] δ0 + δ1 + δ2 + δ3. The dynamical degree δ0 is
always equal to +1, δ3 is the topological degree (number of pre-images: δ3 is equal to +1 for
a birational mapping), δ1 is the first dynamical degree (corresponding to dN(K)) and δ2 is the
second dynamical degree (corresponding to dN(K−1)).

Remark 1. Most physicists will certainly take for granted that the degree growth rate
corresponding to the iteration of K and its inverse K−1 identify: dN(K) � λ(K)N, dN(K−1) �
λ(K−1)N , with λ(K) = λ(K−1). This is actually the case for all the birational transformations
we have studied [20]. In the specific examples of this paper, this is, in the involutive case
ξ = a + b + c − 1 = 1, a straight consequence of the fact that K and K−1 are conjugated.
More generally, this fact can be proved for all birational transformations in CP2, but certainly
not for birational transformations in CPn, n � 3 (for instance birational transformations
generated by products of more than two involutions, or ‘Noetherian’ mappings products of
many collineations and Hadamard involutions [29], such that K and K−1 are not conjugated).
Appendix C provides a simple example of bi-polynomial transformation in CP3 such that
λ(K) �= λ(K−1).

Remark 2. The very definition of the dynamical zeta function on C0(a, b) = 0 is somewhat
subtle, and problematic, since the number of fixed points for K2 (and thus K2N ) is actually
infinite (one has a whole curve (34) of fixed points of order 2). Apparently, in that case where
an infinite number of fixed points of order 2 exist, one does not seem, beyond these cycles of
order 2, to have primitive cycles of even order. Introducing the dynamical zeta function as
usual, from an infinite Weil product [20] on the cycles, and taking into account just the odd
cycles, one obtains (more details are given in appendix D) that this zeta function verifies a
simple functional equation

ζ(t2) = (1 − 2t) · (1 − t)2

(1 + 2t) · (1 + t)2
· ζ(t)2 (32)

showing that, the complexity is still the generic λ = 2, but this time with an expression
which is not a rational function, but some ‘transcendental’expression. In order to have a
Lefschetz formula (31) remaining valid, in such highly singled-out cases for dynamical zeta
functions, one needs to modify the definition of the dynamical zeta function so that it is
no longer deduced from an infinite Weil product [20] formula on the cycles. To be more
specific, this must be performed using the so-called [33] ‘intersection theory’ which is a
(quite involved) theory introduced to cope with isolated points, as well as non-isolated points
(curves . . . ), introducing some well-suited (and subtle) concepts like the notion of multiplicity.
All the associated counting of intersection numbers will, then, correspond to counting of finite
integers (replacing the counting of cycles . . . ). This is far beyond the scope of this paper.

5. Preserved meromorphic 2-forms in particular subspaces (a, b)

In appendix E, we show that the degree growth (in the (a, b) parameters) for the iterates of the
three curves of the critical set (resp. exceptional locus), when the parameters are restricted to
b = a, b = 2 − 2a, b = 1 − 2a and C0(a, b) = 0, is polynomial (δ = 1). The iterates are
found in closed expressions. Let us show that, in these cases, the mapping K preserves simple
meromorphic 2-forms.
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On the three lines b = a, b = 2 − 2a and b = 1 − a/2, one finds three preserved
meromorphic 2-forms reading respectively:

du · dv

(u − 1) · (2(2a − 1)(u + v2) + (5a − 4)(1 + u)v)
= idem(u′, v′)

du · dv

(v − 1) · ((5a − 4)(1 + v)u + 2(2a − 1)(v + u2))
= idem(u′, v′)

du · dv

(v − u) · (4(a − 1)(1 + uv) + (5a − 2)(v + u))
= idem(u′, v′).

(33)

The second and third 2-forms are obtained from the first one in (33) by respectively
(u, v) → (v, u) for b = 2 − 2a, and by (u, v) → (u/v, 1/v) with a → 1 − a/2, for
b = 1 − a/2. For the quadratic condition C0(a, b) = 0, the mapping preserves the following
2-form, up to a minus sign:

du · dv

ρ(u, v)
= − du′ · dv′

ρ(u′, v′)
, where

ρ(u, v) = (b − a)(a2 + b2 + 3ab)(1 + u2)v − (2b + a)(a2 − b2 − ab)(1 + v2)u

− (b + 2a)(a2 − b2 + ab)(u2 + v2) + 2(b − a)(2a + b)(a + 2b)uv. (34)

Note that ρ(u, v) = 0 is an elliptic curve.
Considering the 25 points (a, b), listed in appendix F, for which the mapping is integrable,

one can see that they all belong to the codimension-one subvarieties of the (a, b) plane, where
preserved meromorphic 2-forms are found, i.e. the curve C0(a, b) = 0 and/or the lines
b = a, b = 2 − 2a, b = 1 − a/2 (see figure 1, lower left corner).

Furthermore, when these codimension-one subvarieties intersect, the deduced (a, b)

points correspond to integrability of the mapping. The algebraic invariants corresponding
to these integrability cases can easily be deduced from the fact that, at the intersection of
two curves among C0(a, b) = 0, and the lines b = a, b = 2 − 2a, b = 1 − a/2, one
necessarily has two simple 2-forms preserved (up to a sign). Performing the ratio of two such
2-forms one immediately gets algebraic invariants of the integrable mapping. See appendix F
for examples of algebraic invariants deduced, for integrable points (a, b), from ratio of two
preserved 2-forms.

Remark. One may have the feeling that the exact results on preserved meromorphic 2-forms,
or in the previous sections on complexity reduction for (16), are consequences of the fact
that we restricted ourselves to ξ = a + b + c − 1 = 1, the condition for collineation C to be
involutive (yielding K and K−1 to be conjugate). This is not the case. We give in appendix G
miscellaneous examples of exact results valid when this involutive condition on C is not
verified (ξ = a + b + c − 1 �= 1).

It is tempting, after such an accumulation of preserved 2-forms, to see the previous
results (33), (34) as a restriction to these codimension-one subvarieties in the (a, b)-plane, of
a general (conformally preserved) meromorphic 2-form valid in the whole (a, b)-plane. In
view of the expressions of the 2-forms for the three lines on one hand, and the expression
associated with the elliptic curve (34) on the other hand, one could expect, at first sight, this
meromorphic 2-form to be quite involved. Using a ‘brute force’ method we have tried to
seek, systematically, for meromorphic 2-forms dµ(u, v) = du · dv/ρ(u, v), with an algebraic
(polynomial) covariant ρ(u, v) in the form:

ρ(u, v) =
n1∑

i=0

n2∑
j=0

ciju
ivj . (35)
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The existence of such a polynomial covariant curve is ruled out up to n1 = n2 = 18. Formal
calculations seem hopeless here, in particular if the final result is a non-existence of such an
algebraic covariant of (16) for generic a, b. One needs to develop another approach that might
be also valid to prove a ‘no go’ result like the non-existence of an algebraic covariant ρ(u, v),
and beyond, the non-existence of a ‘transcendental’ covariant ρ(u, v), corresponding to some
analytic but not algebraic curve26.

6. Orbit of the critical set: algebraic curves versus chaotic sets

When a preserved (resp. conformally preserved) meromorphic 2-form du dv/ρ(u, v) exists,
one has the following fundamental relation (3) between the algebraic expression ρ(u, v) and
the Jacobian of transformation K:

ρ(K(u, v)) = ξ · J (u, v) · ρ(u, v) (36)

where ξ is a constant. When ξ = +1 the 2-form is preserved. When there exists an integer
M , such that ξM = 1, the transformation KM , instead of K , preserves a 2-form. When
ξ �= +1 (for any M, ξM �= +1), it is just conformally preserved. Let us restrict the previous
fundamental relation (36) to a point (u, v) such that the Jacobian of transformation K vanishes,
J (u, v) = 0. The fundamental relation (36) necessarily yields for such a point:

ρ(K(u, v)) = 0. (37)

For birational transformations, the images of the curves J (u, v) = 0 are not curves but
blow down into set of points. For mapping (16), the vanishing condition J (u, v) = 0 splits
into three curves u = 0, v = 0 and u = −av/(v(a − 1) + a). The image of these three curves
blow down into three points (u(1), v(1)), (u(2), v(2)) and (u(3), v(3)). Being covariant, ρ(u, v)

not only vanishes at these points (i.e. ρ(u(i), v(i)) = 0 for i = 1, 2, 3), but also on their orbits:

ρ(KN(u(i), v(i))) = 0, N = 1, 2, . . . , i = 1, 2, 3. (38)

One can thus construct a (generically) infinite set of points on ρ(u, v) = 0, as orbits of such
‘singled-out’ points (u(i), v(i)) and visualize them, whatever (the accumulation of) this set of
points is (algebraic curves, transcendental analytical curves, chaotic set of points, . . . ).

Before visualizing some orbits, let us underline that (38) means that the iterates of the
critical set, also called the post-critical set, actually cancel ρ(u, v). These iterates are known
in closed forms for some subspaces. For instance, on the line b = a, the iterates are given
in appendix E in terms of Chebyshev polynomials. At these iterates

(
u

(i)
N , v

(i)
N

)
, with closed

expressions, one has ρ
(
u

(i)
N , v

(i)
N

) = 0.
The meromorphic 2-forms found in section 5 (see (33)) actually correspond to situations

such that the post-critical set (resp. the orbit of the exceptional locus) has δ = 1, closed
expressions being available to describe all these points (Chebyshev polynomials, . . . ). The
generic exponential growth (in the parameters) of the

(
u

(i)
N , v

(i)
N

)
(namely δ ∼ 2) certainly

excludes (even very involved) algebraic expressions (35) for ρ(u, v), but it may not exclude
transcendental analytical curves (like the transcendental curves (31) in paragraph 7 of [29], or
the transcendental curves (20) in [34], which are orbits of a birational transformation exhibiting
some ‘transcendental’ integrability [29, 35].)

26 Along this line, one should recall the occurrence of a transcendental invariant for a birational mapping given
by the ratio of products of simple gamma functions, providing an example of ‘transcendental’ integrability (see
equation (31), paragraph 7 of [29], or equation (20), paragraph (8.3) in [34], or equation (3.3) in [35]).
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Figure 2. Orbit of the critical set for (a, b) = (0, 1.9).

6.1. Visualization of post-critical sets

Let us visualize a few post-critical sets. In the cases where a meromorphic 2-form is
actually preserved (see (33)), one easily verifies that the orbit of (u(1), v(1)) = (b/a, (1 −
a − b)/a), (u(2), v(2)) and (u(3), v(3)) actually yields the covariant condition ρ(u, v) = 0
corresponding to the divisor of a meromorphic 2-form when such a meromorphic 2-form
has been found. Of course if one performs iterations of other points (even very close) than
the singled-out points as (b/a, (1 − a − b)/a), one will not get such an algebraic covariant
curve ρ(u, v) = 0, but more involved orbits. In contrast for parameters (a, b) for which no
meromorphic 2-form was found, we see a drastically different situation, shown in figure 2,
corresponding to the orbit of (b/a, (1 − a − b)/a) (image by transformation K of one of the
vanishing conditions for the Jacobian) for (a, b) = (0, 1.9).

This post-critical set (figure 2) looks very much like a set of curves, a ‘foliation’ of
the (u, v)-plane. Figure 3 shows the post-critical set corresponding to the case (a, b) =
(−0.2, 0.7). With these two orbits it is quite clear that this set of points cannot be a simple
algebraic curve ρ(u, v) = 0.

At this step the ‘true’ nature of this set of points is almost a ‘metaphysical’ question:
is it a transcendental analytical curve infinitely winding, is it a chaotic fractal-like set . . . ?
In particular when one takes a larger frame for plotting the orbit, the set of points becomes
more fuzzy, and it becomes more and more difficult to see whether these points are organized
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Figure 3. Orbit of the critical set for (a, b) = (−0.2, 0.7).

in curves, like figure 2 which suggests an (infinite . . . ) accumulation of curves. We have
encountered such a situation many times (see paragraph 5.1 and figures 13 and 14 in [11]).
A way to cope with the fuzzy appearance of the orbit, when the points go to infinity, is to
perform a change of variables (see paragraph 5 in [11]): (u, v) → (1/u, 1/v). Again one has
the impression to see some kind of ‘foliation of curves’ for the previously fuzzy points, but the
points that were seen in figure 2 as organized like a ‘foliation’ of curves have now (in some
kind of ‘push–pull game’) become fuzzy sets. One way to avoid this ‘push–pull’ problem,
and thus ‘see the global picture’ amounts to performing our plots in the ‘compact’ variables
uc = arctan(u) and vc = arctan(v). These variables are such that any orbit of real points will
be in the box [−π/2, π/2] × [−π/2, π/2]. This trick ‘compactifies’ automatically our orbits.

Let us give two examples of such ‘compactified’ images of two orbits of (b/a, (1 −
a − b)/a) (image by transformation K of one of the vanishing conditions for the Jacobian).
For (a, b) = (−0.2, 0.7) one gets figure 4, and for (a, b) = (−0.2, 0.999 999 999) one
gets figure 5. The indeterminacy locus, namely the points (0, 0), (a/b, a/(1 − a − b) and
(a/(b − 1), a/(2 − a − b), are shown in these figures by bold arrows.

In the situation where preserved meromorphic 2-forms exist, one sees that, even a very
small deviation from the (b/a, (1 − a − b)/a) point (associated with the post-critical set)
yields orbits that look quite different from the algebraic covariant curve ρ(u, v) = 0. In
contrast with this situation, we see, in the previous cases where no preserved meromorphic
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Figure 4. The orbit of the critical set in the ‘compact’ variables uc and vc , for (a, b) = (−0.2, 0.7).

2-forms exist, that a slight modification of the (b/a, (1 − a − b)/a) point (associated with the
post-critical set) yields orbits which are extremely similar to the post-critical set of figures 3
or 4 or 5. These orbits are ‘similar’, but not converging towards this post-critical set. They
are, roughly speaking, ‘parallel’ to this post-critical set. Therefore the orbit of the critical
set may be seen as a chaotic set, but it is a non-attracting chaotic set in contrast with the
well-known strange attractors of Hénon bi-polynomial mappings [36, 37]. Along this line it is
worth noting that the ‘laminarity’ we saw in figure 2 still exists with the ‘compact’ variables
of figure 5. However, this ‘laminarity’ seems to be ruled out in some regions of figure 3 and
this seems to be confirmed on the ‘global picture’ associated with the compact variables with
figure 4. Let us note here that the paper of Bedford and Diller [38] discusses a criterion related
to close approaches of the post-critical set to the indeterminacy locus, and that this question
of ‘laminarity’ of the orbits is central in that discussion. It would certainly be interesting to
generate many more post-critical sets and orbits ‘close’ to the post-critical sets, to see if the
violation of the laminarity we seem to see on some of our figures is confirmed.
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Figure 5. The orbit of the critical set in the ‘compact’ variables uc and vc , for (a, b) =
(−0.2, 0.999 999 999).

6.2. From preserved meromorphic 2-forms and post-critical sets back to fixed points

Denoting (u′, v′), (u′′, v′′), . . . , (u(n), v(n)), the images of a point (u, v), by transformations
K,K2, . . . , Kn, the preservation of a 2-form yields (J [Kn](u, v) being the Jacobian of Kn):

du · dv

ρ(u, v)
= du′ · dv′

ρ(u′, v′)
= · · · = du(n) · dv(n)

ρ(u(n), v(n))

J [Kn](u, v) = ρ(u(n), v(n))

ρ(u, v)
= ρ(Kn(u, v))

ρ(u, v)
.

(39)

From the previous relation, it is tempting to deduce (a little too quickly . . . ) that the Jacobian
of Kn is equal to +1 when evaluated at the fixed point (uf , vf ) of Kn:

J [Kn](uf , vf ) = ρ(Kn(uf , vf ))

ρ(uf , vf )
= +1. (40)
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Table 1. Counting of primitive cycles for a = −1/5, b = 1/2. J denotes J [Kn](uf , vf ).

n 1 2 3 4 5 6 7 8

Fix(Kn) 4 1 2 3 6 9 18 30
J = 1 0 1 0 1 0 3 0 6
|J | = 1 2 0 2 2 4 4 6 8
J �= 1 2 0 0 0 2 2 4 4
|J | �= 1 0 0 0 0 0 0 8 12

We actually found such strong results for (1), and for many other birational transformations
(when, for instance, we evaluated precisely the number of n-cycles, to get the dynamical zeta
function [20]), for which a meromorphic 2-form was actually preserved. In fact, even when
a meromorphic 2-form is preserved, relation (40) (namely the Jacobian of Kn evaluated at a
fixed point of Kn is equal to +1) may be ruled out when the fixed points of Kn correspond
to divisors of the 2-form. If ρ(u, v), corresponding to a preserved meromorphic 2-form, is a
rational expression ρ(u, v) = P(u, v)/Q(u, v) (P(u, v) and Q(u, v) are polynomials), the
Jacobian of Kn, evaluated at a fixed point (uf , vf ) of Kn, can actually be different from +1,
if P(uf , vf ) = 0, or Q(uf , vf ) = 0. Such ‘non-standard’ fixed points of Kn are such that
ρ(uf , vf ) = 0 (resp. ρ(uf , vf ) = ∞), and of course, since ρ(u, v) is typically a covariant
of K (see (36)), such that ρ(u, v), evaluated at all their successive images by KN (for any N
integer), vanishes (resp. is infinite):

J [Kn](uf , vf ) �= +1, ⇒ ρ(KN(uf , vf )) = 0 (resp. ∞) . (41)

Performing orbits of such ‘non-standard’ fixed points could thus be seen as an alternative way
of visualization of ρ(u, v) (whatever its ‘nature’ is: polynomial, rational expression, analytic
expression, . . . ), this alternative way being extremely similar to that previously described,
associated with the visualization of post-critical sets. Finding by formal calculations a very
large accumulation of such ‘non-standard’ fixed points is not sufficient to prove the non-
existence of meromorphic 2-forms: one needs to be sure that this accumulation of points
cannot be localized on some unknown highly involved algebraic curve. It is well known that
proving ‘no-go’ theorems is often much harder than proving theorems that simply require to
exhibit a structure. However, as far as this difficulty to prove a non-existence is concerned,
it can be seen as highly positive and effective, as far as simple down-to-earth visualization
methods are concerned. In contrast with the unique post-critical set, we can consider orbits
of a large (infinite) number of such ‘non-standard’ fixed points of Kn. The relation between
the post-critical set and such non-standard sets is a very interesting one that will be studied
elsewhere.

Let us just consider the birational transformation (16) for (a, b) = (−1/5, 1/2) (where
no meromorphic 2-form has been found). The primitive fixed points (cycles) and the value of
the Jacobian of Kn at the corresponding fixed points, that we will denote by J , are given 27 in
table 1.

The number of cycles are in agreement with the Weil product expansion of the known
(see (27)) exact expression of the dynamical zeta function:

ζ(t) = 1

(1 − 2t)(1 − t)2
= 1

(1 − t)4(1 − t2)(1 − t3)2(1 − t4)3

× 1

(1 − t5)6(1 − t6)9(1 − t7)18(1 − t8)30 · · · . (42)

27 In these tables |J | = 1 means that, at the fixed point of Kn, the value of J is complex and lying on the unit circle.
Similarly, J �= 1 means that J is real and |J | �= 1 means that J is not real.
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Table 2. Counting of primitive cycles for (a, b) such that C22
2 (a, b) = 0. J denotes J [Kn](uf , vf ).

n 1 2 3 4 5 6 7 8 9 10

Fix(Kn) 4 1 2 2 4 5 10 15 26 42
J = 1 0 1 0 0 0 1 0 3 0 6
|J | = 1 2 0 0 0 2 2 0 2 4 2
J �= 1 2 0 2 2 2 2 6 6 10 14
|J | �= 1 0 0 0 0 0 0 4 4 12 20

To some extent, the situations where J = −1, or J is an Nth root of unity, can be ‘recycled’
into a J = 1 situation, replacing Kn by K2n or KNn. However, we see in table 1, the beginning
of a ‘proliferation’ of ‘non-standard’ points that cannot be reduced to J = −1 or JN = 1,
strongly suggesting the non-existence of a meromorphic 2-form. These enumerations have
to be compared with those corresponding to (a, b) = (1/5, 1/5), for which a meromorphic
2-form is actually preserved. We still have the same sequence 4, 1, 2, 3, 6, 9, 18, 30, . . . of
n-cycles, associated with the same dynamical zeta function (42), however (except for the fixed
points of order 1), all the fixed points of order n � 2 are such that J = 1.28

Along this line, let us consider mapping K on curve C22
2 (a, b) = 0, where, despite

the complexity reduction, no meromorphic 2-form has been found. The calculations are
performed for the (generic) values a = 12/13, b = −3/13 (the number of non-generic (a, b)

on C22
2 (a, b) is finite) and are given in table 2.
The number of n-cycles are, of course, in agreement with the Weil product decomposition

of the exact dynamical zeta function (29). We note the same proliferation of ‘non-standard’
fixed points of order n, in agreement with the non-existence of a preserved meromorphic
2-form. This last result confirms what we saw several times, namely the disconnection
between the existence (or non-existence) of a preserved meromorphic 2-form and (topological)
complexity reduction for a mapping.

6.3. Pull-back of the critical set: ‘ante-critical sets’ versus post-critical sets

As far as visualization methods are concerned, physicists ‘fortunately’, perform iterations
without being conscious of the potential dangers: birational transformations have singularities
and they may proliferate29 when performing iterations. More precisely, the critical set
(vanishing conditions of the Jacobian) is a set of curves, whose images, by transformation K,
yield points and not curves (blow down). In contrast, the images by transformation K−1 (resp.
K−N ) of these curves of the critical set (denoted in the following CS) give curves: we do not
have any blow down with K−1 (resp. K−N ). This infinite set of curves obtained by iterating
the critical set by K−1 is such that, for some finite integer N , the image of these curves by
KN will blow down into points, after a finite number N of iterations. Let us call this set, for
obvious reasons, ‘ante-critical set’. This ‘ante-critical set’ is clearly a ‘dangerously singular’
set of points for the iteration of K . It is also a quite interesting set from the singularity analysis
viewpoint [1]. In particular, among these ‘dangerous points’ associated with the infinite set of
curves �N = K−N(CS), some are singled out (more ‘singular’ . . . ): the points corresponding
to intersections of two (or more) such curves �N s. These singled-out points can, in fact, be
obtained by some simple ‘duality’ symmetries from the points of the post-critical set. Such

28 Recall that mappings (1) and (7) for which a meromorphic 2-form exists for generic values of the parameters are
such that J = 1 for all the fixed points we have computed.
29 Mathematicians could ask: are our numerical iterations well defined in some ‘clean’ Zariski space?



Chaotic non-attractors 7979

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Ly
ap

un
ov

 e
xp

on
en

t

0 0.5 1 1.5

b

Figure 6. Lyapunov exponents as a function of parameter b, for a = 1/2, the initial point being
(u, v) = (2, 3).

‘ante-critical sets’, and their associated consequences on the birational transformations K ,
clearly require some further analysis that will be performed elsewhere.

7. Lyapunov exponents and non-existence of meromorphic 2-forms

The previous simple visualization approach can be confirmed by some Lyapunov exponents
analysis. Let us consider orbits of a given initial point (for instance (u, v) = (2, 3)) under
the iteration of birational transformation (16) for parameter a fixed (for instance a = 1/2),
and for different values of the second parameter b, and let us calculate the corresponding
Lyapunov exponent. One thus gets the Lypaunov exponent (of what we can call a ‘generic’
orbit) as a function of parameter b. This simple analysis is an easy down-to-earth way to detect
drastic complexity reductions, the complexity being not the topological complexity (like the
topological entropy or the growth rate complexity) but a less universal (more probabilistic)
complexity (like the metric entropy).

Figures 6 and 7 show, quite clearly, non-zero and positive Lyapunov exponents, such
results being apparently valid not only for the Lyapunov exponent corresponding to our
singled-out orbit, the post-critical set (see figure 7), but also for every orbit in the (u, v)-plane
(see figure 6). With this scanning in the b parameter we encounter several times the singled-out
cases where preserved meromorphic 2-forms exist (a = b, C0(a, b) = 0, . . . , see (33)), and
we see that these specific points are singled out in figure 6. If instead of performing the orbit
of an arbitrary point ((u, v) = (2, 3)) one calculates the Lyapunov exponent corresponding to
the post-critical set one finds similar results with a quite high volatility (a value of b where the
Lyapunov is a ‘local’ maximum is quite close to a value where the Lyapunov is almost zero).

In order to better understand this volatility, we have performed specific Lyapunov
exponents calculations restricted to the singled-out cases where preserved meromorphic
2-forms exist (a = b, C0(a, b) = 0, . . . , see (33)). In such cases we recover the situation we
had [12] with birational mapping (1), namely the Lyapunov exponents are zero (or negative
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Figure 7. Lyapunov exponents as a function of parameter b, for a = 1/2, the initial point being
the image of the critical set.

on the attractive fixed points) for all the orbits we have calculated (the positive non-zero
Lyapunov being possibly on some ‘evanescent’ slim Cantor set [23, 24], see section 2, that
we have not been able to visualize numerically) and the orbits always look like curves. It
is clear that computer experiments like these can hardly detect the slim and subtle Cantor
sets corresponding to the (wedge product) invariant measure described [23, 24] by Diller
and Bedford in such situations, associated with the narrow regions where non-zero positive
Lyapunov could be found: within such (extensive) computer experiments we find, cum grano
salis, that the Lyapunov exponents are ‘generically’ (as far as computer calculations are
concerned . . . ) zero.

With this subtlety in mind, our computer experiments show clearly non-zero positive
Lyapunov exponents when there is no preserved meromorphic 2-form and a total extinction
of these Lyapunov exponents when such preserved meromorphic 2-forms take place.

The occurrence of non-zero positive Lyapunov exponents for hyperbolic systems, or
dynamical systems with strange attractors is well known; this is not the situation we describe
here.

8. Conclusion

The birational transformations in CP2, introduced in section 4, which generically do not
preserve any meromorphic 2-form, are extremely similar to other birational transformations we
previously studied [29], which do preserve meromorphic 2-forms. We note that these two sets
of birational transformations exhibit totally similar30 results as far as topological complexity
is concerned (degree growth complexity, Arnold complexity and topological entropy), but
drastically different numerical results as far as a more ‘probabilistic’ (ergodic) approach

30 In fact identical results: one gets the same family of polynomials controlling the complexity (see (23) or (25) and
compare with [29]).
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of dynamical systems is concerned (Lyapunov exponents). With these examples we see
that the existence, or non-existence, of a preserved meromorphic 2-form explains most of
the (disturbing) apparent discrepancies we saw, numerically, between the topological and
probabilistic approaches of such dynamical systems.

The situation is as follows. When these birational mappings preserve a meromorphic
2-form (conservative reversible case), the (preliminary) results of Diller and Bedford
[23, 24] on mapping (1) give a strong indication (at least in the region of the parameter ε < 0)
that the regions where the chaos is concentrated, namely where the Lyapunov exponents
are non-zero and positive, are quite evanescent, corresponding to an extremely slim Cantor
set associated with an invariant measure given by some wedge product. This nice situation
from a differential viewpoint (existence of a preserved 2-form) is the unpleasant one from
the computer experiments viewpoint; it is extremely difficult to see the ‘chaos’ (homoclinic
tangles, Smale’s horseshoe, . . . ) from the analysis (visualization of the orbits, Lyapunov
exponents calculations, . . . ) of even very large sets of real orbits.

In contrast, when the birational mappings do not preserve a meromorphic 2-form, the
regions where the Lyapunov exponents are non-zero and positive can then clearly be seen on
computer experiments.

In conclusion, the existence, or non-existence, of preserved meromorphic 2-forms has
(curiously) no impact on the topological complexity of the mappings, but drastic consequences
on the numerical appreciation of the ‘probabilistic’ (ergodic) complexity.

The introduction of the post-critical set, namely the orbit of the points obtained by the
blow down of the curves corresponding to the vanishing conditions of the Jacobian of the
birational transformation, thus emerges as a fundamental concept, and tool (of topological and
algebraic nature) to understand the probabilistic (and especially numerical) subtleties of the
dynamics of such reversible [8, 9] mappings.
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Appendix A. Algebraic geometry. Singularities of curves as candidates for
complexity reduction

The conditions of reduced complexity give the points (a, b) that belong to the algebraic curves
CN . These algebraic curves are such that one has a reduced complexity for generic point
(a, b) on the curve. However, singularities of these algebraic curves (from a purely algebraic
geometry viewpoint: local branches, . . . ) can actually be seen to correspond to points (a, b)

in the parameter plane yielding lower complexities for the birational transformation K .
On each curve CN , the spectrum of complexity at the singularities is given by

1 − 2t + tp+2 = 0, p = 0, 1, . . . , N/2 − 2. (A.1)

For example, a generic point on the curve C22
8 has the complexity growth λ = 1.9980.

The singularities of this curve are non-generic points and have complexity growth
λ � 1, 1.6180, 1.8392 given by (A.1) for N = 8. The next curve C22

10 with λ � 1.9995
will inherit the last three values and adds (since p goes now to 3) λ � 1.9275. Note that for
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a given curve CN , the largest value of complexity growth reached by its singularities is given
by 1 − 2t + tN/2.

Let us give the generating functions of the degrees dN , and genus gN of the successive
CN(a, b) = 0 algebraic curves. Let us also introduce the generating function for SN , the
number of singularities of the algebraic curves CN :

dC(t) =
∞∑

n=1

d2n · t2n, gC(t) =
∞∑

n=1

g2n · t2n, sC(t) =
∞∑

n=1

S2n · t2n.

They read respectively (for C22
N up to N = 12):

dC(t) = 2t2 + 6t4 + 12t6 + 26t8 + 48t10 + 98t12 + · · ·
gC(t) = 0t2 + 5t4 + 20t6 + 73t8 + 182t10 + 491t12 + · · ·
sC(t) = 0t2 + 5t4 + 15t6 + 31t8 + 53t10 + 113t12 + · · · .

The degrees dN , the genus gN and the number of singularities SN clearly grow exponentially
like λ2n with λ < 2. We have no reason to believe that these three generating functions
dC(t), gC(t) and sC(t) could be rational expressions. Similarly, their corresponding coefficient
growth rates, λ, have no reason, at first sight, to be algebraic numbers.

A singularity of an algebraic curve is characterized by the coordinates of the singularities
in homogeneous variables, the multiplicity m, the delta invariant δ and the number of
local branches r. In general m � r and δ � m(m − 1)/2. The equality holds for
all the singular points of CN , however, as N increases, some points do not satisfy the
equality. These points are (a = 0, b = 1), (a = 1, b = 0), (a = 1, b = 1) and
(a = 0, b = 0), (a = 0, b = 2), (a = 2, b = 0).

Appendix B. Computing complexity growth of points known in their floating forms

Let us show how to compute the complexity growth of generic (algebraic) points on algebraic
curves, and how to compute the complexity growth of points known in their floating forms.

To compute the complexity growth for the parameters (a, b) belonging to a whole curve,
e.g. C(a, b) = 0, we fix v (for easy iteration), and we iterate up to order N. We eliminate b
between the numerator of uN − X and the curve C(a, b) = 0. We can obtain factorizable
polynomials P1 · P2 · · · One counts the degree of u in the polynomials depending on X,
and discards the polynomials Pi that contain only u. Let us show how this works. One
considers the curve C22

2 given in (22) and computes the complexity for the parameters a and
b such that C22

2 (a, b) = 0. Let us fix v, and eliminate b between uN − X and C22
2 (a, b)

(uN is the Nth iterated, one may take vN instead). One gets for the first four iterations
P(X2, u2), P (X2, u4), P (X2, u8) and P(u2) · P(X2, u14), where P(un), P (Xn, up) denote
polynomials in X and u with the shown degrees. At step 4, a polynomial in u factorizes, which
means that the sequence of degrees in this case is [1, 2, 4, 8, 14, . . .] instead of the generic
[1, 2, 4, 8, 16, . . .].

The degrees of the curves grow as the iteration proceeds; we may need then to compute
the growth complexity for points in the (a, b)-plane only known in their floating form. We
introduce a float numerical method that deals with these points obtained as roots of polynomials
of degree greater than 5. The method starts with the parameters in their floating forms. The
iteration proceeds to order N, where one solves the numerator, and the denominator, of the
variable (say) uN . We take away the common roots and so on. The computation is controlled
by the number of digits used. The computation with the float numeric method is carried out
on the homogeneous variables. Let us show how the method works. The parameters a and b
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are fixed, and known, as floating numbers (with the desired number of digits). The iteration
proceeds as (in the homogeneous variables (x, y, t), where we may fix the starting values of
y and t)

x → x1 = P x
1 (x) → x2 = P x

2 (x) → · · ·
y → y1 = P

y

1 (x) → y2 = P
y

2 (x) → · · ·
t → t1 = P t

1(x) → t2 = P t
2(x) → · · · .

At each step, solving in float each expression, amounts to writing

P x
i (x) = �

n1
j=1(x − x̃j ), P

y

i (x) = �
n2
j=1(x − x̃j ), P t

i (x) = �
n3
j=1(x − x̃j ).

The common (up to the fixed accuracy) terms (x − x̃j ) between P x
i (x), P

y

i (x) and P t
i (x) are

taken away and the degree of, e.g., P x
i (x) is counted according to this reduction.

Appendix C. Degree growth complexity and the ‘arrow of time’

Let us consider (after Guedj and Sibony [39, 40]) the following bi-polynomial transformation:

K(x, y, z) = (z, y − zd, x + y2 − 2yzd).

Its inverse reads

K−1(x, y, z) = (z − y2 + x2d , y + xd, x).

Written in the homogeneous variables u, v,w, t , transformation K and its inverse become

K(u, v,w, t) = (wtd, vtd − twd, utd + v2td−1 − 2vwd, td+1)

K−1(u, v,w, t) = (wt2d−1 − v2t2d−2 + u2d , td(vtd−1 + ud), ut2d−1 − 2vwd, t2d).

Fixing d = 1, for heuristic reason, the successive degrees of Kn(u, v,w, t) read

degu = degv = degw = degt = [2, 3, 5, 8, 13, 21, 34, 55, . . .]

giving the degree generating function

G(K)(t) = t · (t + 2)

1 − t − t2

while the successive degrees of (K−1)n(u, v,w, t) read

degu = degv = degw = degt = [2, 4, 8, 16, 32, 64, . . .]

and give the degree generating function:

G(K−1)(t) = 2t

1 − 2t
.

Transformation K has clearly a golden number complexity different, and smaller, than the
complexity λ = 2 of its inverse.

Appendix D. A transcendental zeta function?

In this appendix, we consider the dynamical zeta function for the parameters (a, b) on
C0(a, b) = 0. This is slightly subtle since the number of fixed points for K2 (and thus
K2N ) is infinite (a whole curve (34) is a curve of fixed points of order 2). Apparently one does
not seem to have even primitive cycles (except the infinite number of two cycles). Introducing
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the zeta functions as usual by the infinite Weil product [20] on the cycles, avoiding the two
cycles and taking into account just the odd primitive cycles one could write

1/ζ(t) = (1 − t)4(1 − t3)2(1 − t5)6(1 − t7)18(1 − t9)56(1 − t11)186 · · · .
Recalling the ‘generic’ expression (27), this expression ζ(t) is such that ζ(t)ζg(−t) =

ζ(−t)ζg(t), and verifies the following functional relation

ζ(t) = 1 + t

1 − t
·
(

1 + 2t

1 − 2t

)1/2

· ζ(t2)1/2

yielding an infinite product expression for ζ(t):

ζ(t) = 1 + t

1 − t
·

∞∏
i=0

(
(1 + 2t2i

)(1 + t2i+1
)

(1 − 2t2i
)(1 − t2i+1

)

)1/2i+1

.

For n as upper limit of the above infinite product, the expansion is valid up to t2n+1−1. The
ratio of the coefficients of (for example) t1023 with t1022 gives λ � 1.9989099, in agreement
with a complexity λ = 2, but with a dynamical zeta function that is not a rational expression,
but some ‘transcendental’ expression.

Of course one can always imagine that the ‘true’ dynamical zeta function requires the
calculation of all the ‘multiplicities’ of Fulton’s intersection theory [33], and that this very
zeta function is actually rational.

Appendix E. The mapping on the lines b = ±a and C0(a, b) = 0

Along the line b = a (and similarly on its equivalents obtained by the actions of P and T),
the growth of the degrees of the parameter a in the iterates of the vanishing conditions of the
Jacobian is polynomial (δ = 1). One, then, expects the iterates to be given in closed forms.
This is indeed the case as can be seen below. The iterates Kn(V1) are given by

Kn(V1) = (un, vn) with: σ1 = 3a2 − 4a + 2

2(2a − 1)

un = 2(2a − 1)Tn(σ1) + a(5a − 4)Un−1(σ1) − 2(2a − 1)

2(2a − 1)Tn(σ1) + a(5a − 4)Un−1(σ1) + 2(2a − 1)

v2n = −2(2a − 1)(5a − 4)Tn(σ1) − 3a(3a − 2)(a − 2)Un−1(σ1)

4(2a − 1)2Tn(σ1)

v2n−1 = 2(2a − 1)(a2 + 2a − 2)Tn(σ1) − a(3a − 2)(a − 2)2Un−1(σ1)

−2a(2a − 1)2Tn(σ1) + a(a − 2)(3a − 2)(2a − 1)Un−1(σ1)

where Tn, Un are Chebyshev polynomials of order n of, respectively, first and second kind.
We have very similar results for the iterates Kn(V3). The iterates Kn(V2) are quite simple

and read

Kn(V2) =
(

1,
2(2a − 1)Un−1(σ2)

2Tn(σ2) − (5a − 4)Un−1(σ2)

)
, σ2 = (3a − 4)/2.

For (a, b) parameters such that C0(a, b) = 0, the iterates of the vanishing conditions of
the Jacobian are also given in closed forms and the growth of the degrees of the parameters is
polynomial (δ = 1).

Note that one finds similar results along the line b = −a (and similarly on its equivalents
obtained by the actions of P and T ) the growth of the degrees of the parameter a in the iterates
of the vanishing conditions of the Jacobian is also polynomial (δ = 1) for Kn(V2). However,
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it is non-polynomial for Kn(V1) and Kn(V3) (1 < δ � 2). The iterates Kn(V1) and Kn(V3)

are not given as closed expressions. Those Kn(V2) are given by

Kn(V2) =
(

−1,
2Un−1(σ )

2Tn(σ ) + aUn−1(σ )

)
, σ = a/2

Kn(V2) ∈ I2 gives the points where the curves C
ij

N are tangent to the line b = −a.

Appendix F. Cases of integrability

The points (a, b) for which the mapping K defined in (16) is integrable are shown in figure 1
(lower left corner). These points are lying on the lines (solid lines) b = a, b = 2 − 2a and
b = 1 − a/2, and on the curve C0(a, b) = 0 (ellipse). The dashed lines in figure 1 (lower left
corner) are b = −a, b = 2 and a = 2.

On the lines b = a and b = 2 − 2a, the integrable cases are

a = 0,
1

3
, 1 − 1√

3
,

2

3
, 1,

4

3
, 1 +

1√
3
. (F.1)

On line b = 1−a/2, the integrable cases, obtained by applying T ·P , are given by (2−2a, a)

from (F.1). The point (a = 2/3, b = 2/3) is common to three lines and corresponds to a
matrix of the stochastic form (5) and the ‘antistochastic’ form (transpose) in the same time.

From these 19 points (a, b), the following six are also on the curve C0(a, b) = 0

(−2/3, 4/3), (4/3,−2/3), (4/3, 4/3), (0, 0), (0, 2), (2, 0).

The curve C0(a, b) = 0 has six other integrable cases:(
1 ± √

5

2
, 1

)
,

(
1 ± √

5

2
,

1 ∓ √
5

2

)
,

(
1,

1 ± √
5

2

)
. (F.2)

One has a total of 25 values of (a, b) for which the mapping K is integrable.
The integrable points common to C0(a, b) = 0 and the lines b = a, b = 2 − 2a, and

b = 1 − a/2 can be understood from the existence of the two preserved 2-forms. Let us
consider, for instance, the point (a, b) = (0, 2) intersection of C0(a, b) = 0 and b = 2 − 2a.
Transformation K for (a, b) = (0, 2) preserves two 2-forms respectively associated with
b = 2 − 2a in (33), and C0(a, b) = 0 (see (34)), namely:

du · dv

(1 − v) · ((v + u2) + 2u(1 + v))
,

du · dv

(1 + v) · ((v + u2) + 2u(1 + v))

corresponding to the fact that K has (up to a sign) Inv = (1 + v)/(1 − v), as an invariant.
This is indeed the case since:

K2(u, v) =
(

− (4 + 7v + 4v2) · u + 2v(1 + v)

2(1 + v) · u + v
, v

)
. (F.3)

We have similar results for the two other integrable points (a, b) = (0, 0) and (a, b) = (2, 0).
They also correspond to K2 being a homographic transformation ((a, b) = (0, 0) preserves
the u coordinate, and (a, b) = (2, 0) preserves the ratio u/v). Note that for the point
(a, b) = (1, 1), as well as (1, 0) and (0, 1), the mapping K is of order six, K6 = identity.

The mapping K , for the integrable point (a, b) = (4/3,−2/3) preserves two 2-forms:
du · dv

(v − 1)(4u(1 + v) + 5(v + u2))
,

du · dv

(v − 1)(v − u2)

their ratio giving the algebraic K-invariant (up to sign):

Inv = v − u2

4u(1 + v) + 5(v + u2)
. (F.4)
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Appendix G. Miscellaneous exact results for ξ = a + b + c − 1 �= 1

Let us provide here a set of exact results, structures (existence of meromorphic 2-forms . . . )
valid in the more general framework where c �= 2 − a − b (KN and K−N are no longer
conjugate).

When c �= 2 − a − b, the resultant in u of the two conditions of order two of birational
transformation (16), namely K2(u, v) = (u, v), yields the following condition (reducing to
condition C0(a, b) = 0 previously written, when c = 2 − a − b):

ab + bc + ca = 0 (G.1)

associated with the (quite symmetric) homogeneous K-covariant (K2-invariant) in the (x, y, t)

homogeneous variables:

cov(x, y, t) = bc · t (y2 − x2) + ac · x(t2 − y2) + ab · y(x2 − t2)

+ (yt + xt + xy)((c − b)bc · t + (b − a)ab · y + ac · (a − c) · x).

One easily finds that, restricted to (G.1), the following meromorphic 2-form is preserved
up to a minus sign:

dx ′ · dy ′

cov(x ′, y ′, 1)
= (−1) × dx · dy

cov(x, y,, 1)
. (G.2)

G.1. For b = c, when c �= 2 − a − b: more 2-forms

Keeping in mind the simple results (33) for meromorphic 2-forms (35), let us restrict to the case
where the K-covariant ρ(u, v) in a meromorphic 2-form like (35) is a polynomial, instead of a
rational (algebraic, . . . ) expression. Let us remark that when c = b but c �= 2−a −b, u−v is
a covariant of transformation K with cofactor 1/((a − 1)uv + a(u + v)). Recalling expression
(20) of the Jacobian of (16), it becomes quite natural, when b = c, to make an ‘ansatz’ seeking
for covariant polynomials ρ(u, v) of the form ρ(u, v) = (u−v) ·Q(u, v), where Q(u, v) will
be a K-covariant quadratic polynomial with cofactor ξ · uv/((a − 1)uv + a(u + v))2. After
some calculations, one finds that the quadratic polynomial Q(u, v) must be of the form:

Q(u, v) = Aa2uv + Ba2 · (u + v) − a(2b − 1)B − b(b − 1)A

the (a, b) parameters being necessarily such that:

(b − a)(a + b + c − 2)(ab + bc + ac) = 0 and

a(b + c − 1)(b + a)(b2 + ab + a2 − a − b − c + 1) = 0.

• Conditions b = c = −a yields A = B, and the conformally preserved 2-form reads
(ξ = a + b + c − 1):

du′ · dv′

(u′ − v′) · (u′ + 1) · (v′ + 1)
= ξ · du · dv

(u − v) · (u + 1) · (v + 1)
.

• Conditions b = c = a yield the conformally preserved 2-form:

du′ · dv′

(u′ − v′) · (u′ − 1) · (v′ − 1)
= ξ · du · dv

(u − v) · (u − 1) · (v − 1)
.
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G.2. For c �= 2 − a − b: more complexity reductions

Condition K2(V2) ∈ I2 amounts to writing

K2(u, 0) = K

(
b

a
,
c − 1

a

)
=

(
a

b
,

a

1 − a − b

)

which yields several algebraic curves, in particular the rational curve (c, b) = (1+1/2a2,−a),
for which one can verify that a reduction of the degree growth rate complexity λ � 1.839
takes place. The degree generating function reads

Gb=−a,c=1+1/2a2 = 1

1 − t − t2 − t3
= 1 − t

1 − 2t + t4
.

Similarly K4(V2) ∈ I2 yields several algebraic curves, in particular the rational curve
(c, b) = (1 + a2/3,−a), for which one can verify a reduction of the degree growth rate
complexity λ � 1.965, the degree generating function reading:

Ga=−b,c=1+a2/3 = 1 − t

1 − 2t + t6
= 1 + t + 2t2 + 4t3

+ 8t4 + 16t5 + 31t6 + 61t7 + 120t8 + 236t9 + · · ·
This is just a set of results for ξ �= 1, among many others that can be easily established.
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unstable Poincaré homoclinic orbits Nonlinearity 10 409–23
[29] Boukraa S, Hassani S and Maillard J-M 2003 Noetherian mappings Physica D 185 3–44
[30] Boukraa S, Hassani S and Maillard J-M 1997 New integrable cases of a cremona transformation: a finite order

orbit analysis Physica A 240 586
[31] Griffiths P and Harris J 1978 Principles of Algebraic Geometry ed M Reid (New York: Wiley)
[32] Favre C 1998 Points périodiques d’applications birationnelles Ann. Inst. Fourier (Grenoble) 48 999–1023
[33] Fulton W 1984 Intersection theory Erghebnisse vol 2 (Berlin: Springer)
[34] Anglès d’Auriac J-C, Maillard J-M and Viallet C M 2002 A classification of four-state spin edge Potts models

J. Phys. A: Math. Gen. 35 9251–72 (Preprint cond-mat/0209557)
[35] Maillard J-M 2003 Polynomial growth for birational mappings from four-state spin edge models J. Nonlinear

Math. Phys. 10 (suppl. 2) 119–32
[36] Benedicks M and Carleson L 1991 The dynamics of the Hénon map Ann. Math. 133 73–169
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